Note on Queueing Game

Zepeng CHEN The HK PolyU

Date: March 20, 2023

1 Unobservable Queues

2 Competition among Servers

Most of the models consider a game with two stages: servers act as leaders by announcing prices, and customers followed by selecting servers accordingly.

2.1 Heterogeneous Time Values

Suppose two identical exponential servers, i.e., $\mu_1 = \mu_2 = \mu$, competes via pricing decisions p_1 and p_2 . The joint arrival process is Poisson with rate λ . Queues are unobservable, i.e., customers form their expectations for waiting time $W_i = \frac{1}{\mu_i - \lambda_i}$. Customers are heterogeneous among their time value c, which has a continuous CDF $F(\cdot)$. The value v of service is exogenously given and identical for all customers.

Note on Servers may also make capacity decisions in the first stage, and time value may be discrete distributed.

In the second stage, $p_i, i = 1, 2$ have been decided and assume that $p_1 \ge p_2$ WLOG. According to the utility maximization problem, customers join queue 2 and 1 if $c < \frac{p_1 - p_2}{W_2 - W_1}$ and $\frac{p_1 - p_2}{W_2 - W_1} < c < \frac{v - p_1}{W_1}$, and balk if $c > \frac{v - p_1}{W_1}$. In other wrods,

$$\lambda_1^* = \lambda \left[F\left(\frac{v-p_1}{W_1}\right) - F\left(\frac{p_1-p_2}{W_2-W_1}\right) \right],$$
$$\lambda_2^* = \lambda F\left(\frac{p_1-p_2}{W_2-W_1}\right).$$

In the first stage, servers determines p_i to maximize their profits $p\lambda_i$. Note on The social welfare maximizing prices are lower than the equilibrium prices.

2.2 Conditional Service Values $V(\lambda)$ on λ

Consider the competition between two identical M/G/1 servers of unobservable queues who serve customers with heterogeneous service values. All customers receive expected utility $V(\lambda)$, which is increasing concave, when the arrival rate is λ . Assume that V'(0) is sufficiently large to avoid trivialities. Obviously, the marginal utility $V'(\lambda^*)$ equals the expected full price in the equilibrium.

Bertrand Equilibrium (Price Competition). Cournot Equilibrium (Rate Competition). Monopoly Perspective. Social Optimal Perspective.